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General Continuation Problem

Problem: Given F : IRn × IR1 −→ IRn, solve F (x , λ) = 0 over a range
of (x , λ) values.

Notation: (x , λ) = x̄ ∈ IRn+1, F (x , λ) = F (x̄), etc.

Typical method framework:

Predict using some extrapolation procedure.

Correct to return approximately to the curve.
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Newton Corrector Iterations

Suppose we have “predicted” x̄pred .

Newton Corrector Iterations: Set x̄0 = x̄pred , and . . .

x̄k+1 = x̄k + s̄k , where F ′(x̄k) s̄k = −F (x̄k).

Require . . .

F ′(x̄k) s̄k = −F (x̄k)

t̄ T s̄k = 0

. . . where t̄ is an approximate tangent.
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Newton–Krylov Iterations

Determine s̄k using a Krylov subspace method, e.g., GMRES,
BiCGSTAB, TFQMR, . . . .

Appeal in Newton iterations:

Some require only Jacobian-vector products.

Some monotonically decrease the linear residual norm = local linear
model norm.

How to adapt to solve the n × (n + 1) constrained system?
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Bordering Approach

Bordering solution (H. Keller, 1977; T. Chan, SISSC 1984, . . . , ):

Write F ′(x̄k) = (Fx ,Fλ) and t̄ =

(
t̄x
t̄λ

)
, and . . .

I Solve Fx a = −F (x̄k) and Fx b = −Fλ.

I Set ∆λ = −(t̄T
x a)/(t̄T

x b + t̄λ) and ∆x = a + ∆λb.

I Set s̄k =

„
∆x
∆λ

«
.

Features:

t̄ T s̄k = 0 even if solves are inexact.

Can use codes, preconditioners for n × n Fx .

Two solves with Fx .

Fx is singular at turning points.
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Alternative Approach

From (W., SISC 2000) . . .

Abstract procedure:

I Determine Q ∈ IR(n+1)×n such that Range Q = { t̄ }⊥ and
‖Qy‖2 = ‖y‖2 for y ∈ IRn.

I Apply the Krylov subspace method to F ′(x̄k)Qyk = −F (x̄k).

I Set s̄k = Qyk .

Features:

t̄ T s̄k = 0 even if solves are inexact.

One solve with F ′(x̄k)Q.

If t̄ is an accurate tangent, then cond (F ′(x̄k)Q) = cond (F ′(x̄k)).

Can use codes, preconditioners for n × n Fx .
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Preconditioning

Suppose M ∈ IRn×n is a preconditioner.

Possibilities:

Left: M−1F ′(x̄k)Qyk = −M−1F (x̄k), s̄k = Qyk .

Right: F ′(x̄k)QM−1zk = −F (x̄k), s̄k = QM−1zk .

Etc.
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Householder Implementation

I Choose Householder P = I − 2wwT ∈ IR(n+1)×(n+1) such that
Pt̄ = (0, · · · , 0, 1)T .

I Define Q ∈ IR(n+1)×n by Qy = P

(
y
0

)
for y ∈ IRn.

I Apply the Krylov subspace method to F ′(x̄k)Qyk = −F (x̄k).

I Set s̄k = Qyk .
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Computing an Accurate t̄.

Important ancillary task: computing a unit t̄ such that F ′(x̄)t̄ = 0.

Given an initial t̄0, . . .

I Solve F ′(x̄)s̄ = −F ′(x̄)t̄0 subject to t̄0
T s̄ = 0.

I Set t̄ =
t̄0 + s̄

‖t̄0 + s̄‖2
.

Krylov Continuation NACDM ’04 June 24, 2004 Slide 9



Illustrative Experiments with the Householder Approach

Rudimentary method, Matlab implementation . . .

Step:

I Given x̄ , t̄, h.

I Predict: x̄pred = x̄ + ht̄.

I Correct to obtain x̄next :

Apply Newton–Krylov corrector iterations.

Convergence failure ⇒ reduce h, repeat.

Rapid convergence ⇒ increase h for next step.

I Update: t̄ ← (x̄next − x̄)/‖x̄next − x̄‖2, x̄ ← x̄next .

Krylov solvers: GMRES(40), BiCGSTAB.
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Illustrative Experiments (cont.)

Bratu (Gelfand) problem:

∆u + λeu = 0 in Ω, u = 0 on ∂Ω

T. Chan (SISSC 1984) problem:

∆u + λ

(
1 +

u + u2/2

1 + u2/100

)
in Ω, u = 0 on ∂Ω

Ω = [0, 1]× [0, 1], centered-differences, m ×m grid.

Fast Poisson left preconditioning.
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Illustrative Experiments (cont.)

Look at mesh-independence of fast Poisson preconditioning.

Tables show geometric means of linear residual ratios ‖rk+1‖2/‖rk‖2.

Bratu problem, 0 ≤ arclength ≤ 3.

Grid Size 16× 16 32× 32 64× 64 128× 128

GMRES(40) .0291 .0294 .0282 .0285

BiCGSTAB .0681 .0961 .1091 .1278

Chan problem, 0 ≤ arclength ≤ 20.

Grid Size 16× 16 32× 32 64× 64 128× 128

GMRES(40) .0207 .0197 .0196 .0205

BiCGSTAB .0575 .0655 .0789 .0935
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Illustrative Experiments (cont.)

Look at linear solver convergence along the curves.
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Bratu problem, GMRES (left) and BiCGSTAB (right), geometric mean of ‖rk+1‖2/‖rk‖2, 64 × 64 grid.
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Chan problem, GMRES (left) and BiCGSTAB (right), geometric mean of ‖rk+1‖2/‖rk‖2, 64 × 64 grid.
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Large-Scale Experiments with LOCA

LOCA: Library of Continuation Algorithms

Main developers: Andy Salinger, Eric Phipps, Roger Pawlowski.

Bifurcation analysis library for large-scale applications on
distributed-memory parallel platforms.

Provides capabilities for

I parameter continuation (including pseudo-arclength and
multi-parameter),

I bifurcation tracking (turning point, pitchfork, Hopf),
I linear stability analysis (drivers for eigensolver).

A Trilinos package (software.sandia.gov/trilinos) that wraps
the NOX nonlinear solver package, also uses AztecOO linear solvers,
Anasazi eigensolver, and Epetra data structures.

Designed for easy linking to application codes employing
Newton-based solvers.
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3D Rayleigh–Benard Convection
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5× 5× 1 box, 208K unknowns, 16 processors.

Incompressible Navier–Stokes, heat transport, unstructured finite-element
method (MPSalsa).

51 continuation steps, fixed step size.

Newt. Func. Jac. GMRES Total GMRES Total
Its. Evals. Evals. Its. Time (hrs.) Time (hrs.)

Bordering 134 317 134 56,929 10.01 12.09

Householder 117 283 117 24,612 4.37 5.35
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Resonant Tunneling Diode

Problem described in Lasater talk.

1M unknowns, 20 processors.

Seven continuation steps in the
difficult region shown on the right.

Bordering Householder

Ave. GMRES Its. for First
Linear Solve per Newton Step 214 202

Ave. GMRES Its. for Second
Linear Solve per Newton Step 206 0

GMRES Failed to Meet Tolerance 11 0

Total Newton Iterations 21 15

Total GMRES Iterations 8826 3026

Total Newton Solve Time (mins.) 98.4 33.6
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In Conclusion

Both the Householder and bordering approaches . . .

satisfy t̄ T s̄k = 0 even if solves are inexact,

allow easy re-use of codes, preconditioners for n × n Fx .

The Householder approach . . .

reduces the number of solves,

maintains conditioning near turning points,

improves behavior of the linear and nonlinear iterations,

significantly reduces overall time to solution.
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